วันอาทิตย์ที่ 8 กุมภาพันธ์ พ.ศ. 2558
ความน่าจะเป็น
พิจารณาในการโยนเหรียญ 1 อัน 2 ครั้ง จะเห็นว่าการที่การโยนเหรียญครั้งหนึ่งขึ้นหัวหรือก้อย ไม่มีผลต่อการขึ้นหัวหรือก้อยในการโยนครั้งที่สอง
เรากล่าวว่าการโยนทั้งสองครั้งเป็นอิสระต่อกัน
นิยาม เหตุการณ์ A และเหตุการณ์ B เป็นอิสระต่อกันก็ต่อเมื่อ P(A B) = P(A) P(B)
ทฤษฎีบท เหตุการณ์ A และเหตุการณ์ B เป็นอิสระต่อกันก็ต่อเมื่อ P(A/B) = P(A)
เหตุการณ์ A และเหตุการณ์ B เป็นอิสระต่อกันก็ต่อเมื่อ P(B/A) = P(B)
ตัวอย่าง โยนลูกเต๋า 2 ลูก 2 ครั้ง จงหาความจะเป็นที่ผลรวมของแต้มแต่ละครั้งเท่ากับ 5
ให้ A แทนเหตุการณ์ที่ผลรวมของแต้มในการโยนครั้งที่ 1 เป็น 5
B แทนเหตุการณ์ที่ผลรวมของแต้มในการโยนครั้งที่ 2 เป็น 5
จะได้ P(A) ==
และ P(B) ==
เนื่องจากการโยนลูกเต๋าแต่ละครั้งเป็นอิสระต่อกัน
ดังนั้นความน่าจะเป็นที่ผลรวมของแต้มแต่ละครั้งเป็น 5 เท่ากับ
P(A B) = P(A) P(B)
= X =
วันอาทิตย์ที่ 11 มกราคม พ.ศ. 2558
เซต

เซต (อังกฤษ: set) ในทางคณิตศาสตร์นั้น
อาจมองได้ว่าเป็นการรวบรวมกลุ่มวัตถุต่างๆ ไว้รวมกันทั้งชุด
แม้ว่าความคิดนี้จะดูง่ายๆ
แต่เซตเป็นแนวคิดที่เป็นรากฐานสำคัญที่สุดอย่างหนึ่งของคณิตศาสตร์สมัยใหม่
การศึกษาโครงสร้างเซตที่เป็นไปได้
ทฤษฎีเซตมีความสำคัญและได้รับความสนใจอย่างมากและกำลังดำเนินไปอย่างต่อเนื่อง
มันถูกสร้างขึ้นมาตอนปลายคริสต์ศตวรรษที่ 19
ตอนนี้ทฤษฎีเซตเป็นส่วนที่ขาดไม่ได้ในการศึกษาคณิตศาสตร์
และถูกจัดไว้ในระบบการศึกษาตั้งแต่ระดับประถมศึกษาในหลายประเทศ
ทฤษฎีเซตเป็นรากฐานของคณิตศาสตร์เกือบทุกแขนงซึ่งสามารถนำไปประยุกต์ใช้ได้ อ่าเพิ่มเติ
การให้เหตุผล
การให้เหตุผลทางคณิตศาสตร์ (หรือการอ้างเหตุผล)
คือ กระบวนการคิดของมนุษย์ และสื่อความหมายกับผู้อื่นด้วยภาษา
ซึ่งประกอบด้วยข้อความ หรือประโยคกลุ่มหนึ่งที่ยกขึ้นมาเพื่อสนับสนุนให้ได้ข้อความ
หรือประโยคตามมา มักจะแสดงในส่วนของ เหตุ เราเรียกข้อความกลุ่มแรกนี้ว่า ข้ออ้าง (Premisses)
และข้อความอีกชุดหนึ่งที่แสดงในส่วนของ ผล จะถูกเรียกว่า ข้อสรุป (Conclusion)อ่าเพิ่มเติม
จำนวนจริง
จำนวนจริง
คือจำนวนที่สามารถจับคู่หนึ่งต่อหนึ่งกับจุดบนเส้นตรงที่มีความยาวไม่สิ้นสุด
(เส้นจำนวน) ได้ คำว่า จำนวนจริง นั้นบัญญัติขึ้นเพื่อแยกเซตนี้ออกจากจำนวนจินตภาพ
จำนวนจริงเป็นศูนย์กลางการศึกษาในสาขาคณิตวิเคราะห์จำนวนจริง (real
analysis) อ่านเพิ่มเติม
วันอาทิตย์ที่ 4 มกราคม พ.ศ. 2558
ความสัมพันธ์และฟังก์ชัน

คู่อันดับ (Order Pair) เป็นการจับคู่สิ่งของโดยถือลำดับเป็นสำคัญ เช่น คู่อันดับ a, b จะเขียนแทนด้วย (a, b) เรียก a ว่าเป็นสมาชิกตัวหน้า และเรียก b ว่าเป็นสมาชิกตัวหลังอ่านเพิ่มเติม
สมัครสมาชิก:
บทความ (Atom)